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Introduction 

What is a blockchain, really? Typical descriptions either gloss over the definition or 

quickly become mired in detail. Here I attempt a description that's somewhere in 

the middle; a description I found myself comfortable with. Hopefully, it’s at a level 

that some others have been looking for. Note: an understanding requires some 

familiarity with computer science. 

A Blockchain 

As much as the term “ledger” gets thrown about, a blockchain really is the 

equivalent of a ledger. Think of those old black books accountants kept on their 

shelves, filled with pages for recording transactions, transactions like “we sent $100 

to company A” or “we received $50 from client B.”  

In the parlance of blockchains, pages of the ledger are referred to as blocks. They 

are fixed amounts of computer storage (Bitcoin seeks to achieve 1 Mb per block) 

where transactions are recorded.  One block corresponds to one page of a ledger, 

and once a block is filled it is archived: no information in that block can be 

modified. The magic of blockchain technology is that even though information in a 

blockchain can be accessible to anyone with a computer, it can’t be changed once 

archived. 

A block may contain many different transactions. Blockchains can contain really any 

information we care to record, but for simplicity we’ll stick with the model most 

people think of -- transactions of things being bought and sold with a 

cryptocurrency like bitcoin. “Person A spent one bitcoin to purchase an equivalent 

amount of another cryptocurrency called ether.” “Person B spent one bitcoin to 

purchase U.S. dollars.”  

A fundamental characteristic is that a blockchain ledger doesn’t come with a fixed 

number of pages. Instead, new pages are added to the back of a ledger over time. 

Presently, the most common process of adding new pages to a ledger (blocks to the 

end of a blockchain) is called mining. 
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The term mining is a bit of a misnomer. Finding blocks that can meet the 

requirements to be added to a blockchain is computationally difficult and requires 

considerable computational power. So miners – people who use computers to 

search for new blocks – are rewarded with cryptocurrency for their efforts. Miners 

don’t mine cryptocurrency itself; they mine blocks to add to the end of a blockchain. 

New cryptocurrency enters the system as payment for finding a new block, not 

because miners found new cryptocurrency. 

Where is a Blockchain? 

Unlike a physical ledger, a blockchain doesn’t reside in one specific location. 

Instead, a complete copy of a blockchain resides on many different computers with 

connections to the internet. This brings us to another term that is widely used when 

describing blockchain technology: distributed. Blockchains are distributed ledgers. 

Computers that contain a copy of a blockchain are known as nodes of that 

blockchain. 

Any computer with enough power and memory can become a node on a 

blockchain if its owner simply downloads free software and installs it. Many middle-

of-the-road PCs are completely capable of serving as a node on one or more 

blockchains. Reasons for becoming a node run from having a direct connection to a 

blockchain – you don’t have to request information from another computer – to 

simple bragging rights. 

The Big Question 

How do we ensure that no one modifies a blockchain? That no one goes into a 

blockchain and changes the information contained in it? Returning to our ledger 

metaphor, how do we know someone can’t use an eraser and pencil to change 

entries in a ledger? 

Bear in mind that there is no single copy of a blockchain. So changing information 

in “a blockchain” requires tricking all of the nodes containing a copy of a blockchain 

into believing that a modified blockchain is actually the original. On the surface this 

doesn’t seem like such a difficult problem to avoid, especially if there are hundreds 

or thousands or tens of thousands of nodes in a blockchain. One bad actor tricking 

all the others seems a monumental task. 

However, the incentive to make changes exists for those actors who desire to steal 

cryptocurrency: simply create transactions that transfer cryptocurrency from 
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someone else’s account into their own. Given that every actor participating in a 

blockchain has an incentive to falsify records, ensuring the integrity of a blockchain 

isn’t as simple as it might appear. 

There are potentially many ways to address the integrity problem, and more than 

one way has been proposed. Here we are considering the most prominent method 

currently in use. 

Ensuring the Information in a Blockchain isn’t Corrupted: Digital Signatures 

Blockchains operate by writing information only to the last block. Once that block 

can no longer hold additional information, a new block is added to the end of a 

blockchain and the block that was just filled is archived. It can be read by anyone, 

but if anyone tries to change the information in the archived block it sets off a red 

flag. 

This red flag comes in the form of a digital fingerprint, more commonly known as a 

hash value. A hash function is a function that takes a large amount of data and 

reduces it to a unique, scrambled code. This code is the hash value. Such 

cryptographic codes have been used throughout history and remain essential in, 

among other things, transmitting e-commerce transactions across the internet. 

Let’s look at hash values and the functions that generate them before turning to 

how they’re used to secure the data in a blockchain. 

One common function, known as SHA-1, was designed by the U.S. National Security 

Agency. Suppose we wanted to use SHA-1 to create the hash value of the following 

string of letters. 

The quick brown fox jumps over the lazy dog 

Providing this string of letters to the SHA-1 hash function, the output would be 

2fd4e1c67a2d28fced849ee1bb76e7391b93eb12 

There are a few things to note about the output. First, it has exactly 40 characters. 

Second, it is made up of only the numbers 0-9 and the letters a-f (this is related to 

the hexadecimal representation of binary numbers but is irrelevant for our 

discussion). This is always the case for the SHA-1 hash function. Suppose we were 

to add a period to this string of characters and calculate the new hash value. 

The quick brown fox jumps over the lazy dog. 
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In this case, the output is 

408d94384216f890ff7a0c3528e8bed1e0b01621 

Observe that with just a very small change in the input – adding a period to the end 

of the character string – the resulting hash value looks nothing like the first value. 

The SHA-1 function is designed to have this property, and it helps demonstrate a 

property that’s part of what we want in a cryptographic hash function: given the 

output, it’s very, very difficult to reconstruct the input. In fact, a good cryptographic 

hash function should be designed so that you can’t go backward. If you have an 

output from a hash function but you don’t know what the input to the function was, 

you must try random values on the input side until you find one that matches the 

output. The probability of doing so is so small that it really can’t be done. 

As might be expected, the process behind creating good hash functions requires 

some mathematical knowledge. But it’s possible to create good hash functions that 

are both simple to implement and for which hash values can be calculated very 

quickly. 

Ensuring the Information in a Blockchain isn’t Corrupted: Using Hash 

Functions 

Consider the case where the last block in a blockchain, say, block 116, is full and 

we’re ready to archive the information and start a new block, block 117. As part of 

this process we’ll use the information in block 116 as input to our hash function. We 

then place the resultant hash value in block 117. Note that this is done every time a 

block is filled and archived, so every block from 1 to 116 has calculated its hash 

value and placed that value in the next higher block. 

Suppose an intruder now changes the information in any block in the chain, say, 

block 63. If we were to compute the hash value for block 63 and compare it to the 

hash value stored in block 64, it wouldn’t match. Anyone else who then sought to 

look at the information in block 63 would check the hash value stored on block 64 

and would know the data on block 63 could no longer be trusted. 

Of course, the obvious question is why the intruder doesn’t just go down the line, 

computing new hash values for blocks 64, 65, 66 and so on so that they’re all in 

accord. In fact, without the introduction of one additional idea the intruder could 

easily do just that. 
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The additional idea that keeps this from happening is, in my estimation, rather 

ingenious, though it’s difficult to tease from much of the material on the web. 

Putting Things Together 

We have so far assumed that we take the data in a block, compute its hash value, 

and place that value in the next block in the chain. However, that’s not exactly 

correct. We’re going to restrict acceptable hash values to values that start with a 

fixed number of zeroes, say, 15. So the hash value 

000000000000000e18fda057782390abb7d7619a3 

would be acceptable, while the hash values 

6e80754da12b14e0cae84839d6707850412fcc76 

and 

0000008832ba1820338ee01b9d46b9edd8bc1f4d 

would not. We define a valid hash value as one that starts with at least 15 zeroes. 

Before getting to the important question of why we might want to do this, it’s worth 

considering the even more basic question of how we might do this. Cryptographic 

hash functions take an input and create a hash value, and we know very little about 

what the hash value will look like.  

The way to ensure that the hash value is valid is to tweak the input a little bit, run it 

through the hash function, and look at the hash value. If it has the desired number 

of leading zeroes you can use it as a valid hash value. If not, you just keep trying. 

Several issues must be raised at this point.  First, what does it mean to tweak the 

input a little bit? Isn’t the data in a block immutable? Not entirely. Each block has 

areas where the data can be changed without altering any important information in 

the block. Think of writing comments in a special comments section. Additionally, 

many blockchains include a nonce. Derived from “number used once,” a nonce is an 

area specially set aside for the sole purpose of tweaking the input a little. 

The second issue is how someone goes about finding one of these rare hash 

values. Won’t that take a lot of time and computational power? The answer is yes 

but with a caveat. No single computer is searching for a good way to adjust the 

input of the block seeking an acceptable hash value. Many computers are working 

on the problem simultaneously. 
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This is where the miners come in. Miners around world are constantly seeking a 

new block to fill with whatever transactions are ready to be archived. When a block 

with tweaked data is found with a valid hash value, the block data, complete with 

the comments and nonce that made its hash value valid, are added to a blockchain.  

Now that we’ve answered the question of how we can turn to the question of why. 

The answer is that it makes it impossible for someone to tamper with a blockchain. 

Recall the scenario before the valid hash values were introduced. An intruder could 

change the information in a block, write a new hash value (valid or invalid) in the 

next block – thus changing the hash value in that block. Changing all the hash 

values down the chain the intruder would have covered their work. 

Now, however, the scenario is different. The intruder can’t use just any hash value. 

Hash values are required to be valid. Since the leading zeroes requirement is public 

knowledge, if someone were to look in a block and find a hash value that didn’t 

meet the leading zeroes requirement, it would be a sign that somewhere in the 

blocks preceding it the blockchain had been corrupted. It had been corrupted 

because the chain was initially put together with blocks whose hash values met the 

leading zeroes requirement. 

With this observation, we see that we now have a blockchain that can keep 

transactions safe in a distributed environment, without a single individual 

overseeing the transactions. 

What has been presented thus far provides a good foundation digging more deeply 

into blockchain technology. However, I’d like to make a few additional comments 

without trying to cover every aspect blockchains.. 

Mempools 

Before transactions become part of a blockchain they’re maintained in what is 

known as a mempool – a holding place in computer memory. Each node maintains 

its own mempool, and while the transactions they hold are similar from one 

mempool to another, they’re not guaranteed to be identical.  

Transactions aren’t kept sequentially in the order they arrive at a node, but receive 

different treatment depending on how much the person behind the transaction is 

willing to pay in fees. The higher the fee, the more the transaction is prioritized. As 

demand for transactions increases, fees tend to rise for different levels of service. 
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While transactions wait in a mempool, nodes that are also miners begin seeking a 

new block to add to the blockchain. As new transactions arrive, they simply use the 

full transaction list as the input to the hashing function. When a valid hash value is 

discovered, the miner that discovers it includes it at the end of a blockchain 

together with the transaction data that formed the basis of the hash value, and 

then sends this information to all the nodes associated with the blockchain. Nodes 

verify that the block is indeed valid, update their copy of a blockchain, and remove 

any transactions in this new block from their mempools. There are certainly many 

more details about mempools I’m not covering and haven’t looked into. These 

include, among other things, maintaining the integrity of transactions while they’re 

in a mempool, the degree to which mempools coordinate, specifics about the fee 

structures, and how the transfer of the fees is handled. 

One of the interesting situations that can occur is that a relatively empty block can 

be added to a blockchain. As soon as a block is added to a blockchain, miners 

immediately begin searching for a new valid block with whatever remains in their 

mempools. If the mempool is small, and a miner is lucky enough to create a new 

block very shortly after the last block was discovered, a relatively empty block is 

added to a blockchain. If the mempool is empty, it’s even possible for an empty 

block to be added to a blockchain. Miners don’t get paid for adding transactions to 

a blockchain, they get paid for adding blocks to a blockchain. 

Probability 

Blockchains operate under the assumption that one actor cannot modify a 

blockchain because they would need to modify not only one block but create 

enough new blocks to replace all subsequent blocks in the chain. This is considered 

impossible from a practical standpoint because finding blocks with valid hash 

values is time consuming and there are many miners competing to find new blocks. 

A bad actor simply wouldn’t be able to create enough new blocks in time without 

corruption of the chain first being uncovered. 

However, this is true only if mining capacity is distributed among many competing 

miners. If, for example, one miner or a colluding group of miners were generating, 

say, 90 percent of new blocks, they could create any necessary blocks with high 

probability and in turn manipulate and corrupt the chain. It is difficult to assess the 

probability of such an event, but it certainly isn’t “vanishingly small.” 
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Managing the Speed of Block Discovery 

Another creative design aspect of blockchains is the way the speed of block 

discovery is controlled. Bitcoin, for example, seeks to have miners create one new 

block every ten minutes. Given the many different miners and no direct means of 

knowing the power of their mining equipment, the problem might at first seem 

challenging. The actual solution, however, is remarkably simple. 

Records are kept to determine the average length of time between block 

discoveries. Suppose new blocks are being discovered over a long period of time at 

an average speed of one new block every ten minutes. However, looking just at 

more recent discoveries, it’s discovered that the average is trending lower to a rate 

of one block every nine minutes. Statistically, miners are mining faster than before, 

perhaps because new miners have entered the world of mining. How does Bitcoin 

increase the average to ten minutes again? 

It does so by increasing the number of leading zeroes required on valid hash 

values. The longer the string of zeroes, the harder it is to find a valid hash value, 

and thus the longer the process will take. Reducing the length of time between 

discoveries is achieved by reducing the number of leading zeroes. 

Energy Consumption 

Mining cryptocurrency requires computers solving one simple problem: guess an 

input by modifying the data in a block that’s ready to be archived, calculate a hash 

value for that block, and see if it has enough leading zeroes. The only purpose for 

expending this energy is to maintain the integrity of a blockchain. 

While I’ve seen many different estimates, the energy expended on crypto mining 

amounts to anywhere from one-half to one percent of world energy consumption. 

That’s a lot of energy, especially when one considers the other things it could be 

used for. 

Reducing Energy Consumption 

The key to making the distributed ledger nature of blockchains work is a means to 

make certain that data in a blockchain remains uncorrupted. The method described 

here, with miners seeking new blocks, is known as proof-of-work. Is it possible that 

some creative individual could come up with an alternative that’s more energy 

efficient? 
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Yes. An alternative that is actively being explored is referred to as proof-of-stake.  A 

description of proof-of-stake is a topic unto itself and one I will not cover here, 

though I found the following video a reasonably good high-level description that 

doesn’t entirely gloss over details (though it’s still too high-level for my taste). It also 

has some history on proof-of-work.  

https://www.youtube.com/watch?v=M3EFi_POhps 

Are there other alternatives to proof-of-work and proof-of-stake? Quite possibly. 

https://www.youtube.com/watch?v=M3EFi_POhps

